6,261 research outputs found

    Remarks on the Heavy Quark Potential in the Supergravity Approach

    Get PDF
    We point out certain unexpected features of the planar QCD3 confining potential, as computed from a classical worldsheet action in an AdS metric via the Maldacena conjecture. We show that there is no Luscher c/R term in the static-quark potential, which is contrary to both the prediction of various effective string models, and the results of some recent lattice Monte Carlo studies. It is also noted that the glueball masses extracted from classical supergravity tend to finite, coupling-independent constants in the strong coupling limit, even as the string tension tends to infinity in the same limit; this is a counter-intuitive result.Comment: 10 pages, 2 figures, Latex2e. Some additional remarks added concerning worldsheet fluctuations in AdS spac

    ‘Ecstasy’ and the use of sleep medications in a general community sample: a four-year follow-up

    Get PDF
    Aims: Animal models show that a single dose of MDMA (‘ecstasy’) can result in long-term disruption of sleep. We evaluated the relationship between ecstasy consumption and the use of sleep medications in humans after controlling for key factors. Design: The Personality and Total Health Through Life project uses a longitudinal cohort with follow-up every four years. This study reports data from waves two and three. Setting: Participants were recruited from the electoral roll in the Australian Capital Territory and Queanbeyan, New South Wales, Australia. Participants: Participants were aged 20-24 years at wave one (1999-2000). Measures: The study collected self-reported data on ecstasy, meth/amphetamine, cannabis, alcohol, tobacco and use of sleeping medications (pharmaceutical or other substances). Depression was categorised with the Brief Patient Health Questionnaire (BPHQ). Other psychosocial measures included lifetime traumas. We used generalised estimating equations to model outcomes. Results: Ecstasy data were available from 2128 people at wave two and 1977 at wave three: sleeping medication use was reported by 227 (10.7%) respondents at wave two and 239 (12.1%) at wave three. Increased odds ratios (OR) for sleeping medication use was found for those with depression (OR=1.88, (95% confidence interval (CI) 1.39, 2.53), women (OR=1.44, 95% CI 1.13, 1.84), and increased by 19% for each lifetime trauma. Ecstasy use was not a significant predictor, but >monthly versus never meth/amphetamine use increased the odds (OR=3.03, 95% CI 1.30, 7.03). Conclusion: The use of ecstasy was not associated with the use of sleeping medications controlling for other risk factors.The PATH study was supported by an NHMRC Program Grant 179805 and NHMRC Project Grant 157125. The sponsors had no role in the design, conduct or reporting of the research. None of the authors have connections (direct or indirect) with the tobacco, alcohol, pharmaceutical or gaming industries or any body substantially funded by one of these organisations

    From Doubled Chern-Simons-Maxwell Lattice Gauge Theory to Extensions of the Toric Code

    Get PDF
    We regularize compact and non-compact Abelian Chern-Simons-Maxwell theories on a spatial lattice using the Hamiltonian formulation. We consider a doubled theory with gauge fields living on a lattice and its dual lattice. The Hilbert space of the theory is a product of local Hilbert spaces, each associated with a link and the corresponding dual link. The two electric field operators associated with the link-pair do not commute. In the non-compact case with gauge group R\mathbb{R}, each local Hilbert space is analogous to the one of a charged "particle" moving in the link-pair group space R2\mathbb{R}^2 in a constant "magnetic" background field. In the compact case, the link-pair group space is a torus U(1)2U(1)^2 threaded by kk units of quantized "magnetic" flux, with kk being the level of the Chern-Simons theory. The holonomies of the torus U(1)2U(1)^2 give rise to two self-adjoint extension parameters, which form two non-dynamical background lattice gauge fields that explicitly break the manifest gauge symmetry from U(1)U(1) to Z(k)\mathbb{Z}(k). The local Hilbert space of a link-pair then decomposes into representations of a magnetic translation group. In the pure Chern-Simons limit of a large "photon" mass, this results in a Z(k)\mathbb{Z}(k)-symmetric variant of Kitaev's toric code, self-adjointly extended by the two non-dynamical background lattice gauge fields. Electric charges on the original lattice and on the dual lattice obey mutually anyonic statistics with the statistics angle 2πk\frac{2 \pi}{k}. Non-Abelian U(k)U(k) Berry gauge fields that arise from the self-adjoint extension parameters may be interesting in the context of quantum information processing.Comment: 38 pages, 4 figure

    From the SU(2)SU(2) Quantum Link Model on the Honeycomb Lattice to the Quantum Dimer Model on the Kagom\'e Lattice: Phase Transition and Fractionalized Flux Strings

    Full text link
    We consider the (2+1)(2+1)-d SU(2)SU(2) quantum link model on the honeycomb lattice and show that it is equivalent to a quantum dimer model on the Kagom\'e lattice. The model has crystalline confined phases with spontaneously broken translation invariance associated with pinwheel order, which is investigated with either a Metropolis or an efficient cluster algorithm. External half-integer non-Abelian charges (which transform non-trivially under the Z(2)\mathbb{Z}(2) center of the SU(2)SU(2) gauge group) are confined to each other by fractionalized strings with a delocalized Z(2)\mathbb{Z}(2) flux. The strands of the fractionalized flux strings are domain walls that separate distinct pinwheel phases. A second-order phase transition in the 3-d Ising universality class separates two confining phases; one with correlated pinwheel orientations, and the other with uncorrelated pinwheel orientations.Comment: 16 pages, 20 figures, 2 tables, two more relevant references and one short paragraph are adde

    From the SU(2)SU(2) Quantum Link Model on the Honeycomb Lattice to the Quantum Dimer Model on the Kagom\'e Lattice: Phase Transition and Fractionalized Flux Strings

    Full text link
    We consider the (2+1)(2+1)-d SU(2)SU(2) quantum link model on the honeycomb lattice and show that it is equivalent to a quantum dimer model on the Kagom\'e lattice. The model has crystalline confined phases with spontaneously broken translation invariance associated with pinwheel order, which is investigated with either a Metropolis or an efficient cluster algorithm. External half-integer non-Abelian charges (which transform non-trivially under the Z(2)\mathbb{Z}(2) center of the SU(2)SU(2) gauge group) are confined to each other by fractionalized strings with a delocalized Z(2)\mathbb{Z}(2) flux. The strands of the fractionalized flux strings are domain walls that separate distinct pinwheel phases. A second-order phase transition in the 3-d Ising universality class separates two confining phases; one with correlated pinwheel orientations, and the other with uncorrelated pinwheel orientations.Comment: 16 pages, 20 figures, 2 tables, two more relevant references and one short paragraph are adde

    Low-Information Radiation Imaging using Rotating Scatter Mask Systems and Neural Network Algorithms

    Get PDF
    While recent studies have demonstrated the directional capabilities of the single-detector rotating scatter mask (RSM) system for discrete, dual-particle environments, there has been little progress towards adapting it as a true imaging device. In this research, two algorithms were developed and tested using an RSM mask design previously optimized for directional detection and simulated 137Cs signals from a variety of source distributions. The first, maximum-likelihood expectation-maximization (ML-EM), was shown to generate noisy images, with relatively low accuracy (145% average relative error) and signal-to-noise ratio (0.27) for most source distributions simulated. The second, a novel regenerative neural network (ReGeNN), performed exceptionally well, with significantly higher accuracy (33\% average relative error) over all source types compared to ML-EM and drastically improved signal-to-noise ratio (0.85) in the reconstructed images. The imaging capabilities of ReGeNN were then experimentally validated using an additively-manufactured mask. Measuring two point and one ring 22Na source distributions, a modified ReGeNN was able to successfully train on simulated noisy signals and accurately predict the relative size and direction of the three sources. To support future design optimizations to overcome current limitations of the current mask design, a ray tracing algorithm was also developed as an alternative to more rigorous Monte Carlo RSM simulations. This ray tracing code was shown to significantly improve computational efficiency, at a slight cost to the simulated signal accuracy for more complex mask designs

    Baar v. Tigerman: An Attack on Absolute Immunity for Arbitrators!

    Get PDF

    Development of a decision analytic model to support decision making and risk communication about thrombolytic treatment

    Get PDF
    Background Individualised prediction of outcomes can support clinical and shared decision making. This paper describes the building of such a model to predict outcomes with and without intravenous thrombolysis treatment following ischaemic stroke. Methods A decision analytic model (DAM) was constructed to establish the likely balance of benefits and risks of treating acute ischaemic stroke with thrombolysis. Probability of independence, (modified Rankin score mRS ≤ 2), dependence (mRS 3 to 5) and death at three months post-stroke was based on a calibrated version of the Stroke-Thrombolytic Predictive Instrument using data from routinely treated stroke patients in the Safe Implementation of Treatments in Stroke (SITS-UK) registry. Predictions in untreated patients were validated using data from the Virtual International Stroke Trials Archive (VISTA). The probability of symptomatic intracerebral haemorrhage in treated patients was incorporated using a scoring model from Safe Implementation of Thrombolysis in Stroke-Monitoring Study (SITS-MOST) data. Results The model predicts probabilities of haemorrhage, death, independence and dependence at 3-months, with and without thrombolysis, as a function of 13 patient characteristics. Calibration (and inclusion of additional predictors) of the Stroke-Thrombolytic Predictive Instrument (S-TPI) addressed issues of under and over prediction. Validation with VISTA data confirmed that assumptions about treatment effect were just. The C-statistics for independence and death in treated patients in the DAM were 0.793 and 0.771 respectively, and 0.776 for independence in untreated patients from VISTA. Conclusions We have produced a DAM that provides an estimation of the likely benefits and risks of thrombolysis for individual patients, which has subsequently been embedded in a computerised decision aid to support better decision-making and informed consent
    corecore